Early warning simulation for coastal inundation vulnerability induced by wave overtopping

2nd International workshop on

waves, storm surges and coastal hazards

Seung-Won Suh Kunsan Nat'l Univ., Korea

Motivation/Background

- Artificially treated (with hardening structures) coastal line > 53%
- Most storm inundation occurred due to wave overtopping (WOT)
- Severe storm surge inundation issued in 2016 due to WOT
- To meet increasing necessity of EWS (weather, storm, surge, wave, inundation, beach erosion,...)
- No existing all mighty model encompassing tide, wave, storm, WOT, overland flow,... (even coupling of models)
- Appropriate numerical treating is required for mathematical singularity solutions occurred in front of upright (steep slope) dikes (wetting-drying schemes cannot be applied)

Methods

- Simulation of storm wave overtop inundations on coastal infrastructures is difficult but <u>EurOtop</u> can empirically provide overtopping volumes, Q
- Evaluating Q and assigning for artificial dikes (levees)
- Incorporating EurOtop into ADCIRC+SWAN
- <u>EurOtop functions are fully embedded in a coupled tide+wave+surge,</u> <u>ADCIRC+SWAN (as ver 53)</u>
- Real-time storm surge + WOT forecasting system
- EWS of WOT in 2018

Results and discussion

- Hindcasting 2016 WOT inundation
- Comparison wrt videos and flood mark survey
- Limitations of EurOtop and further researches

Concluding remarks

- \checkmark WOT functions are embedded completely in ADCIRC v53
- ✓ Additional computational time is ~ 3% compared to ADCIRC+SWAN even 0.1 sec of ∆t for Marine city, Busan simulation
 → EWS of WOT can be successfully applied in other cases
- \checkmark EWS can be done at least 1 d earlier \rightarrow enough to make dynamic EAP
- ✓ Further study on sensitivity of surface reduction factor should be done, considering real-situation

Related articles

ADCIRC workshop presentations, papers

An efficient early warning system for typhoon storm surge ba on time-varying advisories by coupled ADCIRC and SWAN Seung Won Suh • Hwa Young Lee • Hyeon Jeong Kim • Jason G. Fleming Journal of Coastal Research SI 75 1377 - 1381 Coconut Creek, Florida 2016			Ocean Dynan DOI 10.1007	mics (2015) 65:617– 1/s10236-015-0820-3	646		
Journal of Coastal Research SI 75 1377 - 1381 Coconut Creek, Florida 2016			An eff on tin Seung Wo Jason G. H	ficient ear ne-varying n Suh • Hwa You Fleming	rly warning syste g advisories by c ung Lee • Hyeon Jeong Kim	em for typho oupled ADC	on storm surge based IRC and SWAN
	Journal of Coastal Re	search SI	75	1377 - 1381	Coconut Creek, Florida	2016	
Application of EurOtop to Improve Simulations of Coastal Inundations due to Wave Overtopping Hwa-Young Lee [†] , Seung-Won Suh ^{‡*} [†] Disaster Information Research Division National Disaster Management Institute Ulsan, Republic of Korea [†] Department of Ocean Science and Engineering Kunsan, Republic of Korea	Application of H Inundations due Hwa-Young Lee [†] , Seung [†] Disaster Information Resear National Disaster Manageme Ulsan, Republic of Korea	EurOtop to In e to Wave Ov -Won Suh ^{‡*} rch Division ent Institute	mprove S vertoppin	Simulations ng [‡] Department Kunsan Natic Kunsan, Repu	of Coastal of Ocean Science and Engineering mal University ublic of Korea	WWW.cerf-jcr.org	
ABSTRACT Lee, H.Y. and Suh, S.W., 2016. Application of EurOtop to improve simulations of coastal inundations due to wave overtopping. In: Vila-Concejo, A.; Bruce, E.; Kennedy, D.M., and McCarroll, R.J. (eds.), Proceedings of the 14th International Coastal Symposium (Sydney, Australia). Journal of Coastal Research, Special Issue, No. 75, pp. 1377 – 1381. Coconut Creek (Florida), ISSN 0749-0208.	JCR	ABSTRACT Lee, H.Y. and Suh, S overtopping. <i>In:</i> Vila <i>International Coastal</i> – 1381. Coconut Cree	S.W., 2016. A la-Concejo, A.; al Symposium (eek (Florida), Is	pplication of EurOtc Bruce, E.; Kenned Sydney, Australia). SSN 0749-0208.	op to improve simulations of coasta y, D.M., and McCarroll, R.J. (eds.) <i>Journal of Coastal Research</i> , Speci	l inundations due to wave, <i>Proceedings of the 14th</i> al Issue, No. 75, pp. 1377	해양환경 및 수동역학 모델링

델링 연구실

Journal of Coastal Research	al of Coastal Research SI 85 ***_** Coconut Creek, Florida 2018							
Simulation of Wave Ove Caused by Typhoon Cha Seung-Won Suh ^{†*} and Hyeon-Jeong I [†] Department of Ocean Science and Engineer Kunsan National University Kunsan, Republic of Korea	ertopp aba at ^{Kim†}	oing an t Mari	ıd Inur ne City	ndation y, Busa	over a Dike n, Korea	OO RESEARCO	K.cerf-jcr.org	
ABSTRAC Suh, SW. a Chaba at M International Issue No. 85	T and Kim, I farine city <i>l Coastal</i> , pp. ***–	HJ., 2018 7, Busan, <i>Symposium</i> ***. Cocor	. Simulatio Korea. <i>In:</i> n (<i>ICS</i>) 201 nut Creek (F	on of wave o Shim, J.S. 18 (Busan, 1 Florida), ISS	overtopping and inundation ov ; Chun, I., and Lim, H.S. Republic of Korea). <i>Journal</i> N 0749-0208.	ver a dike (eds.), Pro of Coasta	caused by Typhoon oceedings from the l Research, Special	∎ ₽
Journal of Coastal Research		SI	85	***_:	*** Coconut	Creek, Flo	orida	2018
Efficient Real-time Sand Dune Breachin Jin-Su Seok [†] and Seung-Won S [†] Department of Ocean Science and E Kunsan National University Kunsan, Republic of Korea	Erosiong on Suh ^{†*}	on Ea Haeu ^g	rly Wa ndae l	arning Beach,	System and Ar Korea	tificia	I CONTRACTOR	LC4R02 2 NDRUG f-jcr.org

2018

Thank you for your attention and...

Overtopping example in 2012 induced by typhoon Sanba

Marine city inundation due to wave overtopping

Marine city flooding in 2016

- \checkmark Induced by wave overtopping during typhoon Chaba passing
- ✓ Videos taken by cable news, SNS(Twitter, Facebook ...), YouTube

Marine city inundation videos

• Marine city flooding due to wave overtopping in 2016

EurOTop overview

- Integrated various wave overtopping formula taken
- HR Wallingford, Deltares, Infram ...
- CLASH Project : experiment and Field data
- Slope and vertical type structures
- Probabilistic and deterministic design
- Exponential (or Power) function type eq.
- Effect of oblique waves, surface roughness type ...

Coastal Dikes & Embankment Seawalls

Armoured Rubble Slopes & Mounds

Vertical & Steep Seawalls

Calculation of WOT flow rates and conveying to landward

 Calculate wave overtopping volume for upright/steep slope dikes regardless of composite types, irregular surface canopy conditions

All procedures automatically performed

Grid file (Fort.14)

Internal barrier type(24) segment

101 24 = Number of paring node for weir (land boundary 4)

NBVV	IBCONN	BARINHT	BARINCFSB	BARINCFSP
4434	2130	2.8	1.0	1.0
4432	2252	2.8	1.0	1.0
4431	2253	2.8	1.0	1.0
4430	2251	2.8	1.0	1.0

BARTYPE	EQTYPE	BSLOPE	BARHT	BARCF
1	1	1	0	1.0
1	1	1	0	0.3
3	2	2	0	0.3
3	2	2	0	0.3

Original barrier boundary setup element

- **NBVV**: node numbers on normal flow boundary
- **IBCONN** : back face node paired with the front face node
- **BARINHT** : internal barrier height
- BARINCFSB : coefficient of free surface subcritical flow at internal barrier node
- BARINCFSP : coefficient of free surface supercritical flow at internal barrier node

Added structure type

- BARTYPE: Vertical wall=1, Simple sloped barrier=3
- **EQTYPE:** Deterministic eq=1, Probabilistic eq=2, Default=1
- **BSLOPE:** Slope
- **BARHT:** Composite height (m)
- **BARCF:** Wave overtopping reduction factor

Control file (Fort.15)

1	! NOLICAT - OPTION TO CONSIDER TIME DERIVATIVE OF CONV ACC TERMS
3	! NWP - Number of nodal attributes.
primitive_weighting_i	n_continuity_equation
mannings_n_at_sea_f	loor
wave_refraction_in_s	wan
1	! NCOR - VARIABLE CORIOLIS IN SPACE OPTION PARAMETER
1	! NTIP - TIDAL POTENTIAL OPTION PARAMETER
319 <mark>1</mark>	! NWS - WIND STRESS AND BAROMETRIC PRESSURE OPTION PARAMETER
1	! NRAMP - RAMP FUNCTION OPTION
9.81	! G - ACCELERATION DUE TO GRAVITY - DETERMINES UNITS
-3	! TAU0 - WEIGHTING FACTOR IN GWCE
0.1	! DT - TIME STEP (IN SECONDS)
0.0	! STATIM - STARTING SIMULATION TIME IN DAYS
0.0	! REFTIME - REFERENCE TIME (IN DAYS) FOR NODAL FACTORS AND EQUILIBRIUM ARGS
2016 10 02 00 1 0.7 60	00

10.375 ! RNDAY - TOTAL LENGTH OF SIMULATION (IN DAYS)

Source code (wot.f)

```
reduction factor considered due to incident wave angle (vertical dike)
 97
      С
 98
                                        ! mean overtopped volume m3/s/m
                 W Q=0.D0
                                        ! wave breaking parameter (IRIBARREN NUMBER)
 99
                 WBK=0.D0
                                        ! barrier slope (e.g. slope=1:2 then input 2)
100
                 S0=0.D0
101
                W H=0.D0
                                        ! impulsivensess parameter h*
                                       ! validitiv index of EurOtop Egns application condition
102
                VALID WO=0.D0
103
                                       ! freeboard distance (crest level - swl) stilling water leve
                R C=0.D0
                                        ! initial wave incident angle
104
                IN WAVE A2=0.D0
105
                DANG A=0.D0
106
                DANG B=0.D0
107
                 DEP CHK=0.D0
                                        ! depth check for divergence problem in wet-dry area
                                                                                                DEP
108
                 BAR ANGLE=BAR ANGLE1
109
      C .... WOT is defined in fort.15 (0: no computation, 1: wave overtopping)
      C.... needed next variables in fort.14
110
111
     C.... BARTYPE: barrier (structure) type: VERTICAL WALL=1, SIMPLE SLOPED BARRIER=3
112
      C
                              Incompleteness:(COMPOSITE VERTICAL WALL=2, COMPOSTIE SLOPE BARRIER=4)
113
     \exists C .... EQTYPE: Type of computation; Deterministic EQ = 1 OR Probabilistic EQ = 2, default = 1
114
      C.... SLOPE: Slope of the sloped dike (only valid for BARTYPE = 3)
115
      C.... BARCF: Friction coeff of barrier such as reduction factor of tetra-pod
116
                                                                (only valid for sloped dike)
      C
117
      C.... READ INPUT.F modified
118
      C.... WAVE H3 significant wave height (HS)
119
      C.... WAVE A3 mean wave DIReciton (DIR); NORTH=0 degree clockwise --> only adcirc coupling
120
      C.... WAVE T3 mean wave periods (TM01)
121
      C.... NNBB2: seaward barrier node number
122
      C.... ETA2: SURFACE ELEVEATION
123
      C.... DP: water depth(fort.14)
124
      C.... QN2: normal flux through barrier
125
126
٠ 📃
                             111
```


ADCIRC+SWAN+WOT compile (v53.00)

```
-rw-r--r-- 1 jung83kr team 7458 Mar 20 15:02 makefile.pc
drwxr-xr-x 2 jung83kr team 91 Mar 20 15:02 WOT test
[jung83kr@oceansystem0 work]$ cd ./src
-bash: cd: ./src: No such file or directory
[jung83kr@oceansystem0 work]$ ll
total 188
-rw-r--r-- 1 jung83kr team 2847 Mar 20 15:36 actualflags.txt
-rw-r--r-- 1 jung83kr team 6620 Mar 20 15:02 adcirc Xdmf.f
-rwxr-xr-x 1 jung83kr team 50875 Mar 20 15:02 cmplrflags.mk
-rwxr-xr-x 1 jung83kr team 44593 Mar 20 15:02 config.guess
-rwxr-xr-x 1 jung83kr team 34511 Mar 20 15:02 makefile
-rw-r--r 1 jung83kr team 5266 Mar 20 15:02 makefile adcirc dp.pc
-rw-r--r- 1 jung83kr team 5266 Mar 20 15:02 makefile adcirc sp.pc
-rw-r--1 jung83kr team 3291 Mar 20 15:02 makefile adcprep.pc
-rw-r--r-- 1 jung83kr team 13025 Mar 20 15:02 makefile.non pc
-rw-r--r-- 1 jung83kr team 7458 Mar 20 15:02 makefile.pc
drwxr-xr-x 2 jung83kr team
                           91 Mar 20 15:02 WOT test
[jung83kr@oceansystem0 work]$ make clean
makefile:19: (INFO) Guessing the type of platform ADCIRC will run on...
makefile:31: (INFO) Name is x86 64-unknown-linux-gnu, Machine is x86 64, Vendor is unknown, and OS is linux-gnu.
makefile:32: (INFO) The root directory for the build is /st2/jung83kr/ADCIRC/ADCIRC 53 WOT v5
cmplrflags.mk:256: (INFO) Corresponding machine found in cmplrflags.mk.
makefile:38: (INFO) The compiler variable in cmplrflags.mk is set to intel-WOT.
makefile:40: (INFO) The following compilers have been selected...
makefile:41: (INFO) The Fortran compiler for adcprep is set to ifort.
makefile:42: (INFO) The serial Fortran compiler is set to ifort.
makefile:43: (INFO) The parallel Fortran compiler is set to mpif90.
makefile:44: (INFO) The C compiler is set to icc.
rm -f odir*/*.o odir*/*.mod sizes.o
rm -f ../swan/*.f ../swan/*.for ../swan/*.f90
[jung83kr@oceansystem0 work]$ ll
total 188
-rw-r--r-- 1 jung83kr team 2847 Mar 20 15:36 actualflags.txt
-rw-r--r-- 1 jung83kr team 6620 Mar 20 15:02 adcirc Xdmf.f
-rwxr-xr-x 1 jung83kr team 50875 Mar 20 15:02 cmplrflags.mk
-rwxr-xr-x 1 jung83kr team 44593 Mar 20 15:02 config.guess
-rwxr-xr-x 1 jung83kr team 34511 Mar 20 15:02 makefile
-rw-r--r 1 jung83kr team 5266 Mar 20 15:02 makefile adcirc dp.pc
-rw-r--r 1 jung83kr team 5266 Mar 20 15:02 makefile adcirc sp.pc
-rw-r--r 1 jung83kr team 3291 Mar 20 15:02 makefile adcprep.pc
-rw-r--r-- 1 jung83kr team 13025 Mar 20 15:02 makefile.non pc
-rw-r--r-- 1 jung83kr team 7458 Mar 20 15:02 makefile.pc
drwxr-xr-x 2 jung83kr team
                           91 Mar 20 15:02 WOT test
[jung83kr@oceansystem0 work]$ []
```


Real-time tide, wave, storm surge forecasting

Tide simulation and verification

Stations (KORDI) : 96, (IHO) : 153

Automatic storm data fetching

Fetching Typhoon parameters and automatic input file creation

Automatic input file preparation

Automatic storm surge modeling

Early warning simulation modeling for ROI

Storm wave inundation records

Typhoon tracks and characteristics

Typhoon path

Typhoon Chaba (Igme) Typhoon (JMA scale) Category 5 (Saffir-Simpson scale) atitude (degr<mark>e</mark>e) Typhoon Chaba at peak intensity on October 3, observed from the International Space Station Formed September 24, 2016 Dissipated October 7, 2016 (Extratropical after October 5) **Highest winds** 10-minute sustained: 215 km/h (130 mph) 1-minute sustained: 270 km/h (165 mph) Lowest pressure 905 hPa (mbar); 26.72 inHg Fatalities 7 00 \$18.3 million (2016 USD) Damage South Korea, Japan Areas affected Part of the 2016 Pacific typhoon season

en.wikipedia.org

군 산 대 학 교 Kunsan National University CNMCHET

Patching grids to base storm surge model

- ✓ Based on NWP-116k grid
- ✓ Applied fine bathymetry data, GTOPO30 & KorBathy30s
- ✓ # of Nodes : 144,079, dt : 0.1 sec, simulation: 3.5 days, (took ~ 2 h by 180 cores)

Gridding for marine city modeling

Overland grids by using topography data

- ✓ LiDAR by National Geographic Information Institute & DEM of 1:1000
- ✓ Local government data of Haeundae-gu Office in 2012

Wave overtopping modeling

- ✓ Based on NWP-116k grid
- ✓ Applied fine bathymetry data, GTOPO30 & KorBathy30s
- ✓ ADCIRC+SWAN and considering dynamic asymmetric wind for Typhoon Chaba (Peak Pc: 905 hPa, MWS: 60 m/s)
- ✓ # of Nodes : 132,657, dt : 0.1 sec, simulation: 10.75 days, (took ~ 6 h by 120 cores)

Marine city wave overtopping simulation

Dimension of barrier

Wave overtopping (10/05 02:00 ~ 10/05 04:30)

✓ Parapet crest: 4.42 m, Max. WSE : 0.94 m, Max. significant wave height: 3,55 m

Analysis of incoming wave characteristics and WOT

Wave overtopping and propagation of inundation

Wave dir. & periods

Propagation of overland inundation due to WOT

Marine city wave overtopping animation

EWS of WOT in 2018 induced by typhoon Kong-rey

Based on a real-time surge forecasting

YouTube(www.youtube.com/user/CNMCHET)

35

군 산 대 학 교 ^{Kunsan National University}

CNMCHET

Comparison of WOT wrt precedent typhoon advisories

